c-Fos protein as a target of anti-osteoclastogenic action of vitamin D, and synthesis of new analogs

2006 
Although active vitamin D drugs have been used for the treatment of osteoporosis, how the vitamin D receptor (VDR) regulates bone cell function remains largely unknown. Using osteoprotegerin-deficient mice, which exhibit severe osteoporosis due to excessive receptor activator of NF-κB ligand/receptor activator of NF-κB (RANKL/RANK) stimulation, we show herein that oral treatment of these mice with 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] inhibited bone resorption and prevented bone loss, suggesting that VDR counters RANKL/RANK signaling. In M-CSF–dependent osteoclast precursor cells isolated from mouse bone marrow, 1α,25(OH)2D3 potently and dose-dependently inhibited their differentiation into multinucleate osteoclasts induced by RANKL. Among signaling molecules downstream of RANK, 1α,25(OH)2D3 inhibited the induction of c-Fos protein after RANKL stimulation, and retroviral expression of c-Fos protein abrogated the suppressive effect of 1α,25(OH)2D3 on osteoclast development. By screening vitamin D analogs based on their c-Fos–suppressing activity, we identified a new analog, named DD281, that inhibited bone resorption and prevented bone loss in ovariectomized mice, more potently than 1α,25(OH)2D3, with similar levels of calcium absorption. Thus, c-Fos protein is an important target of the skeletal action of VDR-based drugs, and DD281 is a bone-selective analog that may be useful for the treatment of bone diseases with excessive osteoclastic activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    98
    Citations
    NaN
    KQI
    []