Source and sectoral contribution analysis of PM2.5 based on efficient response surface modeling technique over Pearl River Delta Region of China

2020 
Abstract Identifying and quantifying source contributions of pollutant emissions are crucial for an effective control strategy to break through the bottleneck in reducing ambient PM2.5 levels over the Pearl River Delta (PRD) region of China. In this study, an innovative response surface modeling technique with differential method (RSM-DM) has been developed and applied to investigate the PM2.5 contributions from multiple regions, sectors, and pollutants over the PRD region in 2015. The new differential method, with the ability to reproduce the nonlinear response surface of PM2.5 to precursor emissions by dissecting the emission changes into a series of small intervals, has shown to overcome the issue of the traditional brute force method in overestimating the accumulative contribution of precursor emissions to PM2.5. The results of this case study showed that PM2.5 in the PRD region was generally dominated by local emission sources (39–64%). Among the contributions of PM2.5 from various sectors and pollutants, the primary PM2.5 emissions from fugitive dust source contributed most (25–42%) to PM2.5 levels. The contributions of agriculture NH3 emissions (6–13%) could also play a significant role compared to other sectoral precursor emissions. Among the NOX sectors, the emissions control of stationary combustion source could be most effective in reducing PM2.5 levels over the PRD region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    6
    Citations
    NaN
    KQI
    []