Development of Titanium Dioxide-Supported Pd Catalysts for Ligand-Free Suzuki–Miyaura Coupling of Aryl Chlorides

2019 
The catalyst activities of various heterogeneous palladium catalysts supported by anatase-, rutile- and brookite-type titanium oxide for ligand-free Suzuki–Miyaura cross-coupling reactions of aryl chlorides were evaluated. Palladium acetate [Pd(OAc)2], supported on anatase-type titanium oxide (TiO2) via acetonitrile solution impregnation process without reduction [Pd/TiO2 (anatase-type)], demonstrated the highest catalyst activity in comparison to those of other titanium oxide (rutile- or brookite-type) supported Pd(OAc)2 without reduction and reduced Pd/TiO2 (anatase-type) [Pd(red)/TiO2 (anatase-type)]. Various aryl chloride and bromide derivatives were smoothly coupled with arylboronic acids including heteroarylboronic acids in the presence of 5–10 mol% Pd/TiO2 (anatase-type) without the addition of any ligands. Although the fresh Pd/TiO2 (anatase-type) catalyst was surprisingly comprised of ca. 1:2 mixture of palladium(II) and palladium(0) species according to X-ray photoelectron spectroscopy (XPS), in spite of no reduction process, significant further increment of palladium(0) species was observed during the Suzuki–Miyaura coupling reaction, and Pd/TiO2 (anatase-type) was converted into a catalyst, which contained palladium(0) species as the main component [ca. 1:5 mixture of palladium(II) and palladium(0) species]. Therefore, the reduction via the electron donation process to the palladium(II) species may have occurred during the reaction on anatase-type titanium oxide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    6
    Citations
    NaN
    KQI
    []