MicroRNA miR-502-5p inhibits ovarian cancer genesis by downregulation of GINS complex subunit 2.

2021 
Ovarian cancer (OC) is one of the most common malignancies with high incidence and mortality and the eighth most common cancer-associated mortality in women worldwide. Aberrant expression of the GINS complex subunit 2 (GINS2) gene and miR-502-5p has been associated with cancer progression. This study aims to investigate the specific molecular mechanism of the miR-502-5p-GINS2 axis in OC. GINS2 and miR-502-5p expression in OC tissues and cell lines was measured using RT-qPCR. Next, we investigated the interaction between miR-502-5p and GINS2 using a luciferase assay. The role of the miR-502-5p-GINS2 axis was detected by assessing cell proliferation, migration, and apoptosis levels, such as caspase-3 activity and caspase-3 protein expression, in the OC cell lines CaOV3 and SKOV3, respectively. MiR-502-5p expression was decreased, and GINS2 expression was dramatically elevated in OC tissues and cells. Upregulation of miR-502-5p expression repressed cellular proliferation and migration levels but increased the cellular apoptosis level. GINS2 overexpression enhanced the proliferation and migration levels but hampered OC cell apoptosis. Moreover, miR-502-5p inhibited GINS2 expression and suppressed OC tumorigenesis. miR-502-5p targeting GINS2 suppressed OC progression by inhibiting cell growth and promoting cell apoptosis. Hence, we provide a comprehensive understanding of OC involving both miR-502-5p and GINS2, which might be effective therapeutic targets for OC patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []