A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?

1993 
Pure bismuth samples were irradiated at 20 K with swift heavy ions from 18O to 238U in the GeV range. The rate of the induced damage was deduced from in situ electrical resistance measurements. Above a threshold in the electronic stopping power Se equal to 24 keV nm-1, the damage is due to electronic slowing down. Above 30 keV nm-1, the electronic slowing down is efficient enough to induce latent tracks attributed to the appearance of a high-resistivity phase. The induced latent tracks radii can be up to 21.9 nm for Se=51 keV nm-1 which is the largest value reported so far for non-radiolytic materials. The evolution with Se of the latent tracks radii is calculated on the basis of the thermal spike model, assuming a realistic value for the electron-phonon coupling constant. A rather good agreement is obtained which supports the idea that the thermal spike could be operative in the observed radiation damage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    142
    Citations
    NaN
    KQI
    []