Single-photon pump by Cooper-pair splitting

2019 
Hybrid quantum dot-oscillator systems have become attractive platforms to inspect quantum coherence effects at the nanoscale. Here, we investigate a Cooper-pair splitter setup consisting of two quantum dots, each linearly coupled to a local resonator. The latter can be realized either by a microwave cavity or a nanomechanical resonator. Focusing on the subgap regime, we demonstrate that cross-Andreev reflection, through which Cooper pairs are split into both dots, can efficiently cool down simultaneously both resonators into their ground state. Moreover, we show that a nonlocal heat transfer between the two resonators is activated when opportune resonance conditions are matched. The proposed scheme can act as a heat-pump device with potential applications in heat control and cooling of mesoscopic quantum resonators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    3
    Citations
    NaN
    KQI
    []