Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions

2019 
Abstract This paper presents two kinds of strategies to construct structure-preserving algorithms with homogeneous Neumann boundary conditions for the sine-Gordon equation, while most existing structure-preserving algorithms are only valid for zero or periodic boundary conditions. The first strategy is based on the conventional second-order central difference quotient but with a cell-centered grid, while the other is established on the regular grid but incorporated with summation by parts (SBP) operators. Both the methodologies can provide conservative semi-discretizations with different forms of Hamiltonian structures and the discrete energy. However, utilizing the existing SBP formulas, schemes obtained by the second strategy can directly achieve higher-order accuracy while it is not obvious for schemes based on the cell-centered grid to make accuracy improved easily. Further combining the implicit midpoint method and the scalar auxiliary variable (SAV) approach, we construct symplectic integrators and linearly implicit energy-preserving schemes for the two-dimensional sine-Gordon equation, respectively. Extensive numerical experiments demonstrate their effectiveness with the homogeneous Neumann boundary conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    40
    Citations
    NaN
    KQI
    []