The combination of photogrammetry and finite elements for a fine grained functional analysis of anatomical structures

1985 
A new method of functional morphological analysis is presented. Combining stereophotogrammetry with the finite element technique, a new approach, permits a three-dimensional numerical stress analysis of arbitrarily shaped bodies to be performed. The stereophotogrammetric method which originated for three-dimensional calculations in the study of surfaces in land surveying is well suited for the determination of the nodal co-ordinates required for the finite element method, an engineering technique developed for behavioural analysis of solids and fluids responding to external forces. This approach was tested in a study of the functional morphology of the bill of an African wading bird, the shoebill Balaeniceps rex. A few findings of that study are given here in order to demonstrate the method. Advantages of the finite element method compared with other techniques for stress analysis of anatomical structures are also discussed. The method presents exciting possibilities for predicting displacement and stress responses more accurately and in much greater detail. The scope of this powerful computerized stress analysis technique is greatly enhanced with the introduction of stereophotogrammetry for determining the three-dimensional co-ordinates of complex anatomical structures. With the finite element method, the properties of the bone structure can be modelled as they occur in the life of the animal. This is not possible with physical models. Furthermore, rare specimens can be analysed non-destructively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    6
    Citations
    NaN
    KQI
    []