Polarimetric Radar Observation of the Melting Layer in a Convective Rainfall System during the Rainy Season over the East China Sea

2011 
During the rainy season over the East China Sea, convective rainfalls often show melting layer (ML) characteristics in polarimetric radar variables. In this research, the appearance ratio of the ML (the ratio of rainfall area accompanied by polarimetric ML signatures) and the variation in height of the level of the ML signature maximum (MLSM level; defined by the level of the rhv minimum in the ML) in a convective rainfall region in a rainfall system over the East China Sea observed on 2 June 2006 were studied using C-band polarimetric radar (COBRA). For this analysis, a method of rainfall type classification that evaluates the presence of an ML in addition to providing conventional convective‐stratiform classification using range‐ height indicator (RHI) observation data was developed. This rainfall type classification includes two steps: conventional convective‐stratiform separation using the horizontal distribution of Zh at 2-km altitude, and ML detection using the vertical profile of rhv at each horizontal grid point. Using a combination of these two classifications, the following four rainfall types were identified: 1) convective rainfall with an ML, 2) convective rainfall with no ML, 3) stratiform rainfall with an ML, and 4) stratiform rainfall with no ML. An ML was detected in 53.9% of the convective region in the rainfall system. Using the same definition, an ML was detected in 83.1% of the stratiform region. The ML in the convective region showed a marked decrease in rhv coincident with an increase in ZDR around the ambient 08C level, as did that in the stratiform region. Melting aggregated snow was the likely cause of the ML signature in the convective region. The average height of the MLSM level in the convective region was 4.64 km, which is 0.46 km higher than that in the stratiform region (4.18 km) and 0.27 km higher than the ambient 08C level (4.37 km).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    19
    Citations
    NaN
    KQI
    []