Laboratory-scale hydraulic fracturing dataset for benchmarking of enhanced geothermal system simulation tools.

2020 
Successful design of enhanced geothermal systems (EGSs) requires accurate numerical simulation of hydraulic stimulation processes in the subsurface. To ensure correct prediction, the underlying model assumptions and constitutive relationships of simulators need to be verified against experimental datasets. With the aim of generating laboratory-scale benchmark datasets, a state-of-the-art testing facility was developed, allowing for experiments under controlled conditions. Samples of size 30 cm × 30 cm × 45 cm were subjected to confining stresses while high-pressure fluid was injected into the sample through a pre-drilled borehole, where a saw-cut notch was used to initiate a penny-shaped fracture. Fracture growth and propagation was monitored by measuring pressure data and acoustic emissions detected using 32 seismic sensors. Subsequently, samples were split along the fracture plane to outline the created fracture marked by a red-dyed injection fluid. Finally, a 2D fracture contour was generated using photogrammetry. Presented datasets, accessible via a public repository, include experiments on granite and marble samples. They can be used for verifying and improving numerical codes for field stimulation designs. Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12490064
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    2
    Citations
    NaN
    KQI
    []