Imaging Spectroscopy of Ionized Gaseous Nebulae around Optically Faint AGNs at Redshift z ∼ 2

2018 
We present Keck/OSIRIS laser guide-star assisted adaptive optics (LGSAO) integral-field spectroscopy of [O III] λ5007 nebular emission from 12 galaxies hosting optically faint (R = 20–25; ν L_ν ~ 10^(44) – 10^(46) erg s^(−1)) active galactic nuclei (AGNs) at redshift z ~ 2–3. In combination with deep Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) rest-frame optical imaging, Keck/MOSFIRE rest-optical spectroscopy, and Keck/KCWI rest-UV integral-field spectroscopy, we demonstrate that both the continuum and emission-line structures of these sources exhibit a wide range of morphologies, from compact, isolated point sources to double-AGN merging systems with extensive ~50 kpc tidal tails. One of the 12 galaxies previously known to exhibit a proximate damped Lyα system coincident in redshift with the galaxy shows evidence for both an extended [O III] narrow-line emission region and spatially offset Lyα emission (with morphologically distinct blueshifted and redshifted components) indicative of large-scale gas flows photoionized by the central AGN. We do not find widespread evidence of star formation in the host galaxies surrounding these AGNs; the [O III] velocity dispersions tend to be high (σ = 100–500 km s^(-1)), the continuum morphologies are much more compact than a mass-matched star-forming comparison sample, and the diagnostic nebular emission-line ratios are dominated by an AGN-like ionizing spectrum. The sample is most consistent with a population of AGNs that radiate at approximately their Eddington limit and photoionize extended [O III] nebulae whose characteristic sizes scale approximately as the square root of the AGN luminosity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    201
    References
    10
    Citations
    NaN
    KQI
    []