Debiasing Graph Representations via Metadata-Orthogonal Training

2020 
In real world graphs, the formation of edges can be associated with certain sensitive features of the nodes (e.g. gender, community, reputation). In this paper we argue that when such associations exist, any downstream Graph Neural Network (GNN) will be implicitly biased by these structural correlations. To allow control over this phenomenon, we introduce the Metadata-Orthogonal Node Embedding Training (MONET) unit, a general neural network module for performing training-time linear debiasing of graph embeddings. MONET operates by ensuring that the node embeddings are trained on a hyperplane orthogonal to that of the node features (metadata). Unlike debiasing approaches in similar domains, our method offers exact guarantees about the correlation between the resulting embeddings and any sensitive metadata. We illustrate the effectiveness of MONET though our experiments on a variety of real world graphs against challenging baselines (e.g. adversarial debiasing), showing superior performance in tasks such as preventing the leakage of political party affiliation in a blog network, and preventing the gaming of embedding-based recommendation systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []