On the use of edge cracked short bend beam specimen for PMMA fracture toughness testing under mixed-mode I/II

2019 
Abstract In this paper an inclined edge cracked short beam specimen subjected to symmetric three-point bend loading was designed and examined for conducting mixed-mode I/II fracture toughness experiments. The aspect ratio (i.e. length to width ratio) and the loading span distance are considered much lower than the other conventional cracked bend beam samples. Crack tip parameters such as stress intensity factors and T-stress were computed numerically for this specimen by several finite element analyses and it was demonstrated that the specimen is able to produce full combinations of mode I and II including pure mode II. The practical capability of the short bend beam specimen was studied experimentally by conducting a set of mixed-mode fracture tests on PolymethylMethacrylate (PMMA) as a well-known model brittle material. The critical stress intensity factors, the direction of fracture kinking and the path of fracture trajectory were investigated both experimentally and theoretically using two stress and strain-based fracture criteria. The fracture toughness of tested PMMA was decreased by moving towards mode II case due to the effect of T-stress on the fracture mechanism of the short bend beam specimen.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    26
    Citations
    NaN
    KQI
    []