Matrix Metalloproteinase (MMP)-1 and MMP-3 Induce Macrophage MMP-9: Evidence for the Role of TNF-α and Cyclooxygenase-2

2009 
Matrix metalloproteinase (MMP)-9 (gelatinase B) participates in a variety of diverse physiologic and pathologic processes. We recently characterized a cyclooxygenase-2 (COX-2)→PGE 2 →EP4 receptor axis that regulates macrophage MMP-9 expression. In the present studies, we determined whether MMPs, commonly found in inflamed and neoplastic tissues, regulate this prostanoid-EP receptor axis leading to enhanced MMP-9 expression. Results demonstrate that exposure of murine peritoneal macrophages and RAW264.7 macrophages to MMP-1 (collagenase-1) or MMP-3 (stromelysin-1) lead to a marked increase in COX-2 expression, PGE 2 secretion, and subsequent induction of MMP-9 expression. Proteinase-induced MMP-9 expression was blocked in macrophages preincubated with the selective COX-2 inhibitor celecoxib or transfected with COX-2 small interfering RNA (siRNA). Likewise, proteinase-induced MMP-9 was blocked in macrophages preincubated with the EP4 antagonist ONO-AE3-208 or transfected with EP4 siRNA. Exposure of macrophages to MMP-1 and MMP-3 triggered the rapid release of TNF-α, which was blocked by MMP inhibitors. Furthermore, both COX-2 and MMP-9 expression were inhibited in macrophages preincubated with anti-TNF-α IgG or transfected with TNF-α siRNA. Thus, proteinase-induced MMP-9 expression by macrophages is dependent on the release of TNF-α, induction of COX-2 expression, and PGE 2 engagement of EP4. The ability of MMP-1 and MMP-3 to regulate macrophage secretion of PGE 2 and expression of MMP-9 defines a nexus between MMPs and prostanoids that is likely to play a role in the pathogenesis of chronic inflammatory diseases and cancer. These data also suggest that this nexus is targetable utilizing anti-TNF-α therapies and/or selective EP4 antagonists.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    84
    Citations
    NaN
    KQI
    []