Dendrite branching and self-avoidance are controlled by Turtle, a conserved IgSF protein in Drosophila.

2009 
The dendritic trees of neurons result from specific patterns of growth and branching, and dendrite branches of the same neuron avoid one another to spread over a particular receptive field. Recognition molecules on the surfaces of dendrites influence these patterning and avoidance processes by promoting attractive, repulsive or adhesive responses to specific cues. The Drosophila transmembrane protein Turtle (Tutl) and its orthologs in other species are conserved members of the immunoglobulin superfamily, the in vivo functions of which are unknown. In Drosophila sensory neurons, we show that the tutl gene is required to restrain dendrite branch formation in neurons with simple arbors, and to promote dendrite self-avoidance in neurons with complex arbors. The cytoplasmic tail of Tutl is dispensable for control of dendrite branching, suggesting that Tutl acts as a ligand or co-receptor for an unidentified recognition molecule to influence the architecture of dendrites and their coverage of receptive territories.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    46
    Citations
    NaN
    KQI
    []