Ectopic expression of poplar gene PsnERF138 in tobacco confers salt stress tolerance and growth advantages

2021 
The AP2/ERF family is one of the largest plant-specific transcription factors and plays a vital role in plant growth and stress response. In this study, PsnERF138 was cloned from Populus alba×Populus glandulosa and transformed into tobacco using the Agrobacterium-mediated transformation method. PsnERF138 was localized in the nucleus through subcellular localization assay in tobacco. Under normal conditions, the root lengths of PsnERF138 transgenic lines were much longer than those of wild type. Under salt stress, the transgenic tobacco lines over-expressing PsnERF138 showed a significant increase in seed germination rate, plant height, and root length, compared to control plants. In addition, the transgenic tobacco lines displayed some advantages at the physiological level, such as higher superoxide dismutase (SOD) activity, peroxidase (POD) activity, proline content, and lower malondialdehyde (MDA) content, as compared to those in the control plants. Histochemical staining also showed that the transgenic tobacco lines had lower reactive oxygen species (ROS) accumulation, compared to control plants under salt stress. The combined results indicate that poplar PsnERF138 plays a contributing role in augmenting salt tolerance and conferring multiple growth advantages as being overexpressed in tobacco.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []