Detecting Mycobacterium tuberculosis complex and rifampicin resistance via a new rapid multienzyme isothermal point mutation assay.

2021 
Abstract Simple, rapid, and accurate detection of the Mycobacterium tuberculosis complex (MTBC) and drug resistance is critical for improving patient care and decreasing the spread of tuberculosis. To this end, we have developed a new simple and rapid molecular method, which combines multienzyme isothermal rapid amplification and a lateral flow strip, to detect MTBC and simultaneously detect rifampin (RIF) resistance. Our findings showed that it has sufficient sensitivity and specificity for discriminating 118 MTBC strains from 51 non-tuberculosis mycobacteria strains and 11 of the most common respiratory tract bacteria. Further, compared to drug susceptibility testing, the assay has a sensitivity, specificity, and accuracy of 54.1%, 100.0%, and 75.2%, respectively, for detection of RIF resistance. Some of the advantages of this assay are that no special instrumentation is required, a constant low temperature of 39 °C is sufficient for the reaction, the turnaround time is less than 20 min from the start of the reaction to read out and the result can be seen with the naked eye and does not require specialized training. These characteristics of the new assay make it particularly useful for detecting MTBC and RIF resistance in resource-limited settings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []