Changing Wheat Bran Structural Properties by Extrusion-Cooking on a Pilot and Industrial Scale: A Comparative Study.

2021 
Extrusion-cooking can be used to change the techno–functional and nutrition-related properties of wheat bran. In this study, pilot-scale (BC21) and industrial-scale (BC45) twin-screw extrusion-cooking using different types of extrusion (single-pass, double-pass and acid extrusion-cooking) and process parameters (temperature, moisture) were compared for their impact on wheat bran. When applying the same process settings, the higher strong water-binding capacity, extract viscosity and extractability displayed by bran extruded using the industrial set-up reflected a more considerable wheat bran structure degradation compared to pilot-scale extrusion-cooking. This was attributed to the overall higher specific mechanical energy (SME), pressure and product temperature that were reached inside the industrial extruder. When changing the type of extrusion-cooking from single-pass to double-pass and acid extrusion-cooking, wheat bran physicochemical characteristics evolved in the same direction, irrespective of extruder scale. The differences in bran characteristics were, however, smaller on industrial-scale. Results show that the differentiating power of the latter can be increased by decreasing the moisture content and increasing product temperature, beyond what is possible in the pilot-scale extruder. This was confirmed by using a BC72 industrial-scale extruder at low moisture content. In conclusion, the extruder scale mainly determines the SME that can be reached and determines the potential to modify wheat bran.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []