Antecedent control on active ice sheet retreat revealed by seafloorgeomorphology, offshore Windmill Islands, Antarctica

2021 
Abstract. Understanding past retreat of Antarctic ice margins provides valuable insight for predicting how ice sheets may respond to future environmental change. This study, based on high resolution multibeam bathymetry from the nearshore region of the Windmill Islands, East Antarctica, reveals a style of retreat that has been rarely observed on the Antarctic margin. A suite of seafloor features record the final retreat stages of a relatively thin, and increasingly fractured tidewater glacier confined within narrow troughs and embayments, forming a suite of features more typical of warm-based ice, but occurring here in a region of cold-based ice with limited surface meltwater production. The pattern of moraines and crevasse squeeze ridges, reveals strong topographic and substrate control on the nature of ice sheet retreat. Topographic control is indicated by fine-scale variability in the orientation and distribution of glacial landforms, which show that the seabed topography influenced the shape of the ice margin, caused deflection of ice flow and led to the separation of flow downstream from topographic highs. The availability of water saturated marine sediments within the troughs and depressions also had a profound effect on the landform record, facilitating the construction of moraines and crevasse squeeze ridges within topographic lows, corresponding to areas of modern sediment accumulation. Surrounding areas of crystalline bedrock, by contrast, acted as sticky spots and lack a well-developed landform record. This seafloor glacial record emphasises the importance of understanding the bed topography and substrate when predicting the nature of ice margin retreat and provides new perspectives for understanding the stability of the East Antarctic margin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []