Biomechanical study of cellulose scaffolds for bone tissue engineering in vivo and in vitro.

2021 
Plant-derived cellulose biomaterials have recently been utilized in several tissue engineering applications. These naturally-derived cellulose scaffolds have been shown to be highly biocompatible in vivo, possess structural features of relevance to several tissues, and support mammalian cell invasion and proliferation. Recent work utilizing decellularized apple hypanthium tissue has shown that it possesses a pore size similar to trabecular bone and can successfully host osteogenic differentiation. In the present study, we further examined the potential of apple-derived cellulose scaffolds for bone tissue engineering (BTE) and analyzed their mechanical properties in vitro and in vivo. MC3T3-E1 pre-osteoblasts were seeded in cellulose scaffolds. Following chemically-induced osteogenic differentiation, scaffolds were evaluated for mineralization and for their mechanical properties. Alkaline phosphatase and Alizarin Red staining confirmed the osteogenic potential of the scaffolds. Histological analysis of the constructs revealed cell invasion and mineralization throughout the constructs. Furthermore, scanning electron microscopy demonstrated the presence of mineral aggregates on the scaffolds after culture in differentiation medium, and energy-dispersive spectroscopy confirmed the presence of phosphate and calcium. However, although the Young′s modulus significantly increased after cell differentiation, it remained lower than that of healthy bone tissue. Interestingly, mechanical assessment of acellular scaffolds implanted in rat calvaria defects for 8 weeks revealed that the force required to push out the scaffolds from the surrounding bone was similar to that of native calvarial bone. In addition, cell infiltration and extracellular matrix deposition were visible within the implanted scaffolds. Overall, our results confirm that plant-derived cellulose is a promising candidate for BTE applications. However, the discrepancy in mechanical properties between the mineralized scaffolds and healthy bone tissue may limit their use to low load-bearing applications. Further structural re-engineering and optimization to improve the mechanical properties may be required for load-bearing applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []