Dynamics and Morphology of Cold Gas in Fast, Radiatively Cooling Outflows: Constraining AGN Energetics with Horseshoes

2021 
Warm ionized and cold neutral outflows with velocities exceeding $100\,{\rm km\,s}^{-1}$ are commonly observed in galaxies and clusters. Theoretical studies however indicate that ram pressure from a hot wind, driven either by the central active galactic nucleus (AGN) or a starburst, cannot accelerate existing cold gas to such high speeds without destroying it. In this work we explore a different scenario, where cold gas forms in a fast, radiatively cooling outflow with temperature $T\lesssim 10^7\,{\rm K}$. Using 3D hydrodynamic simulations, we demonstrate that cold gas continuously fragments out of the cooling outflow, forming elongated filamentary structures extending tens of kiloparsecs. For a range of physically relevant temperature and velocity configurations, a ring of cold gas perpendicular to the direction of motion forms in the outflow. This naturally explains the formation of transverse cold gas filaments such as the blue loop and the horseshoe filament in the Perseus cluster. Based on our results, we estimate that the AGN outburst responsible for the formation of these two features drove bipolar outflows with velocity $>2,000\,{\rm km\,s}^{-1}$ and total kinetic energy $>8\times10^{57}\,{\rm erg}$ about $\sim10$ Myr ago. We also examine the continuous cooling in the mixing layer between hot and cold gas, and find that radiative cooling only accounts for $\sim10\%$ of the total mass cooling rate, indicating that observations of soft X-ray and FUV emission may significantly underestimate the growth of cold gas in the cooling flow of galaxy clusters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []