Imaging low-mass planets within the habitable zone of {\alpha} Centauri

2021 
Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, {\alpha} Centauri. Based on 75-80% of the best quality images from 100 hours of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of {\alpha} Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around {\alpha} Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    7
    Citations
    NaN
    KQI
    []