Analysis of the effects of primary heat transfer system isolation valves in case of in-vessel loss-of-coolant accidents in the EU DEMO

2020 
Abstract As DEMO is the first European device planned to produce electricity from fusion, the volume of its Primary Heat Transfer Systems (PHTS) will be consistently larger if compared to present or next-generation tokamaks such as ITER. The consequences of an in-vessel Loss-Of-Coolant Accident (LOCA) would then be more important, and within the EUROfusion Consortium different possible mitigation measures are being investigated. Among these, the introduction of Isolation Valves (IsoVs) on the main cooling loops of the Breeding Blanket is being considered, in view of the many benefits they would introduce, not only in case of accidents, but also e.g. during the maintenance of the in-vessel components. Fast-closing IsoVs on the PHTS would help in relaxing not only the requirements of the VV pressure suppression system (VVPSS) design, but also those related to the expansion volumes that shall accommodate the contaminated coolant discharged from the PHTS after a LOCA. In the present work, the GETTHEM code, the system-level thermal-hydraulic model developed for the EU DEMO at Politecnico di Torino, is used to assess the beneficial effects of the introduction of the IsoVs. The effects of the actuation time of the IsoVs and of their location are parametrically investigated, considering both water and helium as PHTS coolants, with particular reference to the reduction of the in-vessel space-averaged pressure and of the suppression system size.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    4
    Citations
    NaN
    KQI
    []