Biochemical changes and amino acid deamination & decarboxylation activities of spoilage microbiota in chill-stored grass carp (Ctenopharyngodon idella) fillets.

2021 
Abstract This study aimed to reveal amino acid deamination and decarboxylation activities of spoilage microbiota in chill-stored grass carp fillets. Results showed that microbial deamination activities of umami/sweet-taste amino acids were higher than that of bitter-taste amino acids. The total deamination activity of tested amino acids decreased during the late period of storage, which inhibited the increase of ammonia in fish flesh. Microbial decarboxylation activity of ornithine was much higher than lysine and histidine, which was consistent with the rapid increase of putrescine in fish fillets. Meanwhile, putrescine could be produced in large quantities through arginine deiminase pathway of spoilage bacteria. Glucose utilization by spoilage microbiota was active during the late period of storage, which was consistent with the rapid consumption of lactate and total sugar in fish flesh. Overall, results of this study could be beneficial for revealing fish spoilage mechanisms and providing theoretical guidance for developing fish preservation technologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    2
    Citations
    NaN
    KQI
    []