FROST—Fast row-stochastic optimization with uncoordinated step-sizes

2019 
In this paper, we discuss distributed optimization over directed graphs, where doubly stochastic weights cannot be constructed. Most of the existing algorithms overcome this issue by applying push-sum consensus, which utilizes column-stochastic weights. The formulation of column-stochastic weights requires each agent to know (at least) its out-degree, which may be impractical in, for example, broadcast-based communication protocols. In contrast, we describe FROST (Fast Row-stochastic-Optimization with uncoordinated STep-sizes), an optimization algorithm applicable to directed graphs that does not require the knowledge of out-degrees, the implementation of which is straightforward as each agent locally assigns weights to the incoming information and locally chooses a suitable step-size. We show that FROST converges linearly to the optimal solution for smooth and strongly convex functions given that the largest step-size is positive and sufficiently small.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    48
    Citations
    NaN
    KQI
    []