PGC-1α–FNDC5–BDNF signaling pathway in skeletal muscle confers resilience to stress in mice subjected to chronic social defeat

2018 
Skeletal muscle consumes two thirds of the body’s energy and may play a role in stress-related disorders. Evidence suggests that the peroxisome proliferator-activated receptor γ coactivator α (PGC-1α)–fibronectin type III domain-containing 5 (FNDC5)–brain-derived neurotrophic factor (BDNF) signaling pathway in skeletal muscle plays a key role in conferring the beneficial effects of exercise. In this study, we aimed to determine whether this pathway contributes to the resilience or susceptibility of mice subjected to chronic social defeat stress (CSDS). BDNF–tropomyosin receptor kinase B (TrkB) and proBDNF–p75NTR signaling in the medial prefrontal cortex and nucleus accumbens of susceptible but not resilient mice were significantly altered compared with the controls. Furthermore, the levels of PGC-1α, FNDC5, and BDNF, as well as the p-TrkB/TrkB ratio in the skeletal muscle of susceptible but not resilient mice, were significantly lower than those of the controls, but the levels of proBDNF and p75NTR in the skeletal muscle of susceptible mice were significantly higher than those of the controls. Moreover, there were significant positive associations between social interaction test data and the expression of PGC-1α, FNDC5, and BDNF or the p-TrkB/TrkB ratio in skeletal muscle. These results suggest that the downregulation of the PGC-1α–FNDC5–BDNF signaling pathway in skeletal muscle contributes to resilience vs. susceptibility to CSDS. Therefore, alterations in this pathway in skeletal muscle may play a crucial role in mediating stress-related disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    17
    Citations
    NaN
    KQI
    []