Fundamental parameters of massive stars in multiple systems: The cases of HD17505A and HD206267A

2018 
Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD17505A and HD206267A. Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. The inner binaries of these systems have eccentric orbits with e ~ 0.13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD17505Aa and HD206267Aa, respectively. Slight modifications of the CNO abundances are found in both components of each system. The components of HD17505Aa are both well inside their Roche lobe, whilst the primary of HD206267Aa nearly fills its Roche lobe around periastron passage. Whilst the rotation of the primary of HD206267Aa is in pseudo-synchronization with the orbital motion, the secondary displays a rotation rate that is higher. The CNO abundances and properties of HD17505Aa can be explained by single star evolutionary models accounting for the effects of rotation, suggesting that this system has not yet experienced binary interaction. The properties of HD206267Aa suggest that some intermittent binary interaction might have taken place during periastron passages, but is apparently not operating anymore.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []