Autonomous Vehicle Localization with Prior Visual Point Cloud Map Constraints in GNSS-Challenged Environments

2021 
Accurate vehicle ego-localization is key for autonomous vehicles to complete high-level navigation tasks. The state-of-the-art localization methods adopt visual and light detection and ranging (LiDAR) simultaneous localization and mapping (SLAM) to estimate the position of the vehicle. However, both of them may suffer from error accumulation due to long-term running without loop optimization or prior constraints. Actually, the vehicle cannot always return to the revisited location, which will cause errors to accumulate in Global Navigation Satellite System (GNSS)-challenged environments. To solve this problem, we proposed a novel localization method with prior dense visual point cloud map constraints generated by a stereo camera. Firstly, the semi-global-block-matching (SGBM) algorithm is adopted to estimate the visual point cloud of each frame and stereo visual odometry is used to provide the initial position for the current visual point cloud. Secondly, multiple filtering and adaptive prior map segmentation are performed on the prior dense visual point cloud map for fast matching and localization. Then, the current visual point cloud is matched with the candidate sub-map by normal distribution transformation (NDT). Finally, the matching result is used to update pose prediction based on the last frame for accurate localization. Comprehensive experiments were undertaken to validate the proposed method, showing that the root mean square errors (RMSEs) of translation and rotation are less than 5.59 m and 0.08°, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    2
    Citations
    NaN
    KQI
    []