Prediction of charge and energy transport in organic crystals with quantum chemical protocols employing the hopping model

2015 
As organic semiconductors gain more importance for application, research into their properties has become necessary. This work investigated the exciton and charge transport properties of organic semiconducting crystals. Based on a hopping approach, protocols have been developed for the calculation of Charge mobilities and singlet exciton diffusion coefficients. The protocols do not require any input from experimental data except for the x-ray crystal structure, since all needed quantities can be taken from high-level quantum chemical calculations. Hence, they allow to predict the transport properties of yet unknown compounds for given packings, which is important for a rational design of new materials. Different thermally activated hopping models based on time-dependent perturbation theory were studied for the charge and exciton transport; i. e. the spectral overlap approach, the Marcus theory, and the Levich-Jortner theory. Their derivations were presented coherently in order to emphasize the different levels of approximations and their respective prerequisites. A short reference was made to the empirical Miller-Abrahams hopping rate. Rate equation approaches to calculate the stationary charge carrier mobilities and exciton diffusion coefficients have been developed, which are based on the master equation. The rate equation approach is faster and more efficient than the frequently used Monte Carlo method and, therefore, provides the possibility to study the anisotropy of the transport parameters and their three-dimensional representation in the crystal. The Marcus theory, originally derived for outer sphere electron transfer in solvents, had already been well established for charge transport in organic solids. It was shown that this theory fits even better for excitons than for charges compared with the experiment. The Levich-Jortner theory strongly overestimates the charge carrier mobilities and the results deviate even stronger from the experiment than those obtained with the Marcus theory. The latter contains larger approximations by treating all vibrational modes classically. The spectral overlap approach in combination with the developed rate equations leads to even quantitatively very good results for exciton diffusion lengths compared to experiment. This approach and the appendant rate equations have also been adapted to charge transport. The Einstein relation, which relates the diffusion coefficient with the mobility, is important for the rate equations, which have been developed here for transport in organic crystals. It has been argued that this relation does not hold in disordered organic materials. This was analyzed within the Framework of the Gaussian disorder model and the Miller-Abrahams hopping rate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []