Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain.

2008 
Low voltage activation of CaV1.3 L-type Ca2+ channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. CaV1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in CaV1.4 L-type Ca2+ channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the CaV1.3 α1 subunit C terminus gives rise to a long (CaV1.342) and a short form (CaV1.342A), we investigated if a C-terminal modulatory mechanism also controls CaV1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with β3 and α2δ1 subunits in HEK-293 cells. Activation of calcium current through CaV1.342A channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several CaV1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting CaV1.3ΔC116 channels showed gating properties similar to CaV1.342A that were reverted by co-expression of the corresponding C-terminal peptide C116. Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of CaV1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control CaV1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates CaV1.3 channel activation at lower voltages expected to favor CaV1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    116
    Citations
    NaN
    KQI
    []