Metal pollution in the Pearl River Estuary and implications for estuary management: The influence of hydrological connectivity associated with estuarine mixing.

2021 
Abstract Understanding the metal pollution can help governments and estuary management groups manage metal inputs. Here, we comprehensively analyzed the behaviors of seven metals Cd, Zn, Cu, As, Pb, Cr, and Hg in water and the responses of these metals to hydrological connectivity in the Pearl River Estuary. The analyses were based on the field measurements of August-2016 in the estuary and January-2016 in the upper river mouth. We also assessed the ecosystem health of these metals. Overall, this estuary had an overall moderate pollution level, with occasional severe perturbations. The mean concentration of individual metal was in the order of Zn > As > Cu > Cr > Pb > Cd > Hg. The eastern estuary was more heavily polluted by metals (notably, Zn, Cd, and Cu) than the western estuary; this condition was attributable to sewage and industrial effluent discharges from the eastern urban cities of Dongguan and Shenzhen. Longitudinally, high levels of Cd and Zn appeared in the upper estuary, while elevated levels of Cu, As, Pb, Cr, and Hg were found in the middle and lower estuaries. The riverine inputs and estuarine mixing significantly influenced the distribution and movement of trace metals in the estuary, and have contributed to phytoplankton productivity (chlorophyll-a > 10 μg/L). River inflow inhibited the vertical diffusion of metals, and tidal currents facilitated surface-to-bottom mixing. Cu and Cd posed ecological risks. We determined the source contributions and transport routes of the metals using principal component analysis combining with multiple linear regression. The results of this study suggest that the source apportionment of metals can help to manage the source input entering into the estuary. Further, identified hydrological connectivity of metals can inform water quality managers in the highly anthropogenically influenced estuary.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    0
    Citations
    NaN
    KQI
    []