The effect of spiral trajectory correction on pseudo‐continuous arterial spin labeling with high‐performance gradients on a compact 3T scanner

2019 
PURPOSE: To demonstrate the feasibility of pseudo-continuous arterial-spin-labeled (pCASL) imaging with 3D fast-spin-echo stack-of-spirals on a compact 3T scanner (C3T), to perform trajectory correction for eddy-current-induced deviations in the spiral readout of pCASL imaging, and to assess the correction effect on perfusion-related images with high-performance gradients (80 mT/m, 700T/m/s) of the C3T. METHODS: To track eddy-current-induced artifacts with Archimedean spiral readout, the spiral readout in pCASL imaging was performed with 5 different peak gradient slew rate (Smax ) values ranging from 70 to 500 T/m/s. The trajectory for each Smax was measured using a dynamic field camera and applied in a density-compensated gridding image reconstruction in addition to the nominal trajectory. The effect of the trajectory correction was assessed with perfusion-weighted (DeltaM) images and proton-density-weighted images as well as cerebral blood flow (CBF) maps, obtained from 10 healthy volunteers. RESULTS: Blurring artifact on DeltaM images was mitigated by the trajectory correction. CBF values on the left and right calcarine cortices showed no significant difference after correction. Also, the signal-to-noise ratio of DeltaM images improved, on average, by 7.6% after correction (P < .001). The greatest improvement of 12.1% on DeltaM images was achieved with a spiral readout using Smax of 300~400 T/m/s. CONCLUSION: Eddy currents can cause spiral trajectory deviation, which leads to deformation of the CBF map even in cases of low value Smax . The trajectory correction for spiral-readout-based pCASL produces more reliable results for perfusion imaging. These results suggest that pCASL is feasible on C3T with high-performance gradients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []