Features of the geochemistry of the Moon and the Earth, determined by the mechanism of formation of the Earth – Moon system (report at the 81st international meteorite conference, Moscow, july 2018)

2019 
This article discusses some features of geochemistry of the Earth and the Moon, which manifests the specificity of the mechanism of their formation by fragmentation of protoplanetary gas-dust condensation (Galimov & Krivtsov, 2012). The principal difference between this model and other hypotheses of the Earth-Moon system formation, including the megaimpact hypothesis, is that it assumes the existence of a long stage of the dispersed state of matter, starting with the formation of protoplanetary gas-dust condensation, its compression and fragmentation and ending with the final accretion to the formed high-temperature embryos of the Earth and the Moon. The presence of the dispersed state allows a certain way to interpret the observed properties of the Earth-Moon system. Partial evaporation of solid particles due to adiabatic heating of the compressing condensation leads to the loss of volatiles including FeO. Computer simulations show that the final accretion is mainly performed on a larger fragment (the Earth’s embryo) and only slightly increases the mass of the smaller fragment (the Moon embryo).This explains the relative depletion of the Moon in iron and volatile and the increased concentration of refractory components compared to the Earth. The reversible nature of evaporation into the dispersed space, in contrast to the kinetic regime, and the removal of volatiles in the hydrodynamic flow beyond the gas-dust condensation determines the loss of volatiles without the effect of isotopes fractionation. The reversible nature of volatile evaporation also provides, in contrast to the kinetic regime, the preservation of part of the high-volatile components, such as water, in the planetary body, including the Moon. It follows from the essence of the model that at least a significant part of the Earth’s core is formed not by segregation of iron in the silicate-metal melt, but by evaporation and reduction of FeO in a dispersed medium, followed by deposition of clusters of elemental iron to the center of mass. This mechanism of formation of the core explains the observed excess of siderophilic elements in the Earth’s mantle. It also provides a plausible explanation for the observed character of iron isotopes fractionation (in terms of δ 57 Fe‰) on Earth and on the Moon. It solves the problem of the formation of iron core from initially oxide (FeO) form. The dispersed state of the substance during the period of accretion suggests that the loss of volatiles occurred during the time of accretion. Using the fact that isotopic systems: U–Pb, Rb–Sr, 129 J– 129 Xe, 244 Pu– 136 Xe, contain volatile components, it is possible to estimate the chronology of events in the evolution of the protoplanetary state. As a result, agreed estimates of the time of fragmentation of the primary protoplanetary condensation and formation of the embryos of the Earth and the Moon are obtained: from 10 to 40 million years, and the time of completion of the earth’s accretion and its birth as a planetary body: 110 – 130 million years after the emergence of the solar system. The presented interpretation is consistent with the fact that solid minerals on the Moon have already appeared at least 60 million years after the birth of the solar system (Barboni et al., 2017), and the metal core in the Earth and in the Moon could not have formed before 50 million years from the start of the solar system, as follows from the analysis of the Hf-W system (Kleine et al., 2009). It is shown that the hypothesis of megaimpact does not satisfy many constraints and does not create a basis for the explanation of the geochemistry of the Earth and the Moon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []