An evaluation of parallel simulated annealing strategies with application to standard cell placement

1997 
Simulated annealing, a methodology for solving combinatorial optimization problems, is a very computationally expensive algorithm and, as such, numerous researchers have undertaken efforts to parallelize it. In this paper, we investigate three of these parallel simulated annealing strategies when applied to standard cell placement, specifically the TimberWolfSC placement tool. We have examined a parallel moves strategy, as well as two new approaches to parallel cell placement-multiple Markov chains and speculative computation. These algorithms have been implemented in ProperPLACE, our parallel cell placement application, as part of the ProperCAD II project. We have constructed ProperPLACE so that it is portable across a wide range of parallel architectures. Our parallel moves algorithm uses novel approaches to dynamic message sizing, message prioritization, and error control. We show that parallel moves and multiple Markov chains are effective approaches to parallel simulated annealing when applied to TimberWolfSC, yet speculative computation is wholly inadequate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    50
    Citations
    NaN
    KQI
    []