Intriguing magnetism of the topological kagome magnet TbMn_6Sn_6

2021 
Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. Here, we explore magnetic correlations in the transition-metal-based kagome magnet TbMn$_{6}$Sn$_{6}$. Our results show that the system exhibits an out-of-plane ferrimagnetic structure $P6/mm'm'$ (comprised by Tb and Mn moments) with slow magnetic fluctuations in a wide temperature range. These fluctuations exhibit a slowing down below $T_{\rm C1}^{*}$ ${\simeq}$ 120 K and a slightly modified quasi-static magnetic state is established below $T_{\rm C1}$ ${\simeq}$ 20 K. A canted variation of the $P6/mm'm'$ structure is possible, where all moments contribute to a net $c$-axis ferrimagnetic state which exhibits zero net in-plane components. Alternatively, a small incommensurate $k$-vector could arise below $T_{\rm C1}$. We further show that the temperature evolution of the anomalous Hall conductivity (AHC) is strongly influenced by the low temperature magnetic crossover. More importantly, the here identified magnetic state seems to be responsible for the large quasi-linear magnetoresistance as well as for the appearance of quantum oscillations, which are related to the quantized Landau fan structure featuring a spin-polarized Dirac dispersion with a large Chern gap. Therefore the exciting perspective of a magnetic system arises in which the topological response can be controlled, and thus explored, over a wide range of parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []