Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect

2013 
[1] Over water, infrared radiometers on satellites measure radiation leaving from the surface skin layer and therefore the retrieved temperature is representative of the skin layer. This is slightly different from the bulk layer deeper in the water where various floating thermometers take temperature measurements to validate satellite measurements. The difference between the bulk and skin temperature (skin effect) must be understood to properly validate schemes that use surface skin temperature to infer bulk temperatures. Further skin temperatures retrieved over inland waters may show different patterns to those retrieved over oceans due to differences in conditions such as wind speed, aerosols, and elevation. We have analyzed the differences between the skin and bulk temperatures at four permanent monitoring stations (buoys) located on Lake Tahoe since 1999 and compared the results with similar studies over the ocean typically obtained from boat cruises. Skin effect distributions were found to be consistent across the buoys; however, the diurnal behavior of the skin effect was slightly different and shown to be related to wind speed measured at an individual buoy. When wind speed was less than 2 m s−1, the skin temperature osclillated and greatly increased the uncertainty in the skin effect reported over Lake Tahoe. When downwelling sky radiation was increased from clouds or high humidity, this led to nighttime skin temperatures that were warmer than bulk temperatures by as much as 0.5 K. The size of the warm skin effect is larger than other ocean studies that observed warm nighttime skin values around 0.1 K. The nighttime skin effect was seen to be more consistent with a smaller standard deviation compared to the daytime skin effect. The nighttime skin behavior had a mean and standard deviation that ranged between 0.3 and 0.5 K and between 0.3 and 0.4 K, respectively. In contrast, daytime skin effect was strongly influenced by direct solar illumination and typically had a mean of 0.5 K in the morning that decreased to 0.1 K by midday. The standard deviation of the daytime skin effect ranged from 0.3 in the morning to 0.8 by midday. As the solar heating reduces later in the day the skin effect increases to a 0.3 K mean with a standard deviation of 0.4 K. The results for Lake Tahoe clearly demonstrate that validating satellite-derived skin measurements or merging multiple satellites data sets together would be most successful when using nighttime data at wind speeds greater than 2 m s−1 with greater uncertainties expected when using daytime measurements. Further, the assumptions used for the skin effect behavior over oceans may not be appropriate over lakes because of the greater range of environmental conditions that affect lakes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    36
    Citations
    NaN
    KQI
    []