Three-dimensional simulations of anomalous absorption of laser radiation by plasma with supercritical density

2012 
A three-dimensional (3D) model of the interaction of laser radiation with plasma in the framework of Maxwell-Vlasov equations has been used to calculate the anomalous optical absorption in plasma of supercritical density. The results of calculations confirmed the development of anomalous absorption that was previously revealed by 2D models, which were insufficient for comparison to the experiment. Calculations were performed for a system containing about 106 macroparticles that allowed the absorption coefficient and other characteristics of anomalous absorption in plasma with an inhomogeneous surface to be determined as functions of various parameters of the incident radiation and plasma target. Results are analyzed and estimations are obtained for the contributions of ionization processes and pair collisions of electrons, which show that these factors were quite reasonably ignored in the model. All quantitative results are obtained for the third harmonic of neodymium laser (λ = 0.351 μm) at a tenfold excess of the substance density over a critical value for this radiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    5
    Citations
    NaN
    KQI
    []