Multifunctional materials: new mechanisms for NLO effects

1992 
Multifunctional properties of nonlinear optical chromophores are discussed both in terms of a given chromophore exhibiting more than one type or mechanism of optical nonlinearity and in terms of a chromophore exhibiting useful auxiliary properties. For materials exhibiting more than one type of mechanism of optical nonlinearity, the concept of pulse-controlled optical nonlinearity is introduced and discussed. An analogy is drawn to multidimensional nuclear magnetic resonance studies which are useful in systematically elucidating excited state dynamics. Practically, pulsed control of optical nonlinearity provides a means of enhancing and modulating nonlinear optical phenomena. The photochemical reactivity of nonlinear optical chromophores is discussed in terms of fabricating ordered lattices appropriate for the development of integrated circuits and the realization of specific effects such as quasi-phase matching in second harmonic generation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []