Liquid-Gated High Mobility and Quantum Oscillation of the Two-Dimensional Electron Gas at an Oxide Interface

2016 
Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here, we demonstrate the modulation of electrical transport properties and extremely high mobility of two-dimensional electron gas at LaAlO3/SrTiO3 (LAO/STO) interface through ionic liquid-assisted electric field effect. With a change of the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19 380 cm2/(V s) are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces, which exhibit quantum phenomena, could be obtained by ionic liquid-assisted field effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    41
    Citations
    NaN
    KQI
    []