Nonthermal X-ray emission from a tungsten Z-pinch at 5 MA

1995 
Summary form only given. The generation of intense bursts of warm X-rays (10 to 100 keV) with power in the 1-TW regime are of interest for the study of in-depth nuclear radiation effects. Results from high-atomic-number single-wire experiments carried out at 0.8 MA on Gamble II in the 1970s showed 0.25% efficient production of nonthermal, bremsstrahlung-like lines and continuum in the 5- to 100-keV regime. This high efficiency in combination with suggested Z/sup 2/ and I/sup 2/ scaling of the nonthermal radiation motivated the present experiment to measure and model the radiation from the Z pinch formed from compact high-Z wire arrays at high current. In the experiment, tungsten wire arrays of length 20 mm on a mounting radius of 2 mm were imploded over the mass range 1 to 16 mg on the Saturn accelerator operating with a peak discharge current of 5 MA. As in the Gamble-II experiments, bright spots were observed to form at /spl sim/1-mm intervals along the z axis at the time of a first implosion and to be the source of the hard radiation measured. Maximum radiation occurred for masses less than or approximately equal to 4 mg. The experiment was simulated using the LASNEX and TIP numerical codes with a nonthermal model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []