Numerical Analysis of Particulate Migration Behavior within Molten Pool during TIG-Assisted Droplet Deposition Manufacturing of SiC Particle-Reinforced Aluminum Matrix Composites

2021 
A transient three-dimensional (3D) numerical model was established to illustrate the heat transfer, fluid flow and particle migration behaviors in the molten pool during TIG-assisted droplet deposition manufacturing (DDM) of SiC particle-reinforced aluminum matrix composites (AMCs). The effect of temperature-dependent physical properties and the interaction between the SiC reinforcement and the liquid metal matrix were considered. A double-ellipsoidal volumetric heat source model was adopted to simulate the energy interactions between the pulse square-wave variable polarity TIG welding arc and the moving substrate. Free surface fluctuations of molten pool due to arc force and sequential droplet impact are calculated with volume of fluid (VOF) method in a fixed Eulerian structured mesh. The numerical model, capable of capturing the impact, simultaneous spread, and phase change of the droplets as well as the motion trajectory and terminate distribution state of the reinforcement particles, is key tool to understand the formation mechanism of the TIG-assisted DDM of SiC particle-reinforced AMCs. The numerical model was validated by the metallographic observations, and the calculated particle distribution and solidification morphology of deposited layer agree well with the experimental measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []