Phase investigations of manganese-bismuth alloyed in a microwave furnace

2020 
Implementation of manganese-bismuth (MnBi) alloys as high-performance permanent magnets is a challenge for physicists and engineers because the ferromagnetic low-temperature phase (LTP) is not exclusively obtained. In this work, melting powered by four commercial magnetrons of 2000???2500 W in a microwave furnace is demonstrated as a new route to alloy MnBi. Under an argon atmosphere, microwave heating transferred to pieces of broken Bi ingots and Mn flakes for 2 h gave rise to products of inhomogeneous composition and morphology. Scanning electron micrographs were classified into three regions according to morphology and elemental composition. Cubic-like clusters characterized as Mn precipitated over light solidified Bi-rich regions, and the MnBi phase was formed in homogeneous regions with a balanced composition between Mn and Bi. A ferromagnetic hysteresis loop was obtained in the ground powder with a coercivity of 40 kA/m. Subsequent annealing at 553 K under a pressure of 414 kPa for 12 h enhanced the MnBi phase with extended regions of balanced composition. It follows that the coercivity was increased to 60 kA/m. However, remanent magnetization was slightly reduced. This MnBi alloyed by microwave radiation can be further used in rare-earth-free magnets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []