Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer

2020 
Slot-die coatings are advantageous when used for coating large-area flexible devices; in particular, the coating width can be controlled and simultaneous multi-layer coatings can be processed. To date, the effects of ink widening and the coating gap on the coating thickness have only been considered in a few studies. To this end, we developed two mathematical models to accurately estimate the coating width and thickness that consider these two effects. We used root mean square deviation (RMSD) to experimentally verify the developed method. When the coating gap was increased, the coating width increased and the coating thickness decreased. Experimental results showed that the estimated performances of the coating width and thickness models were as high as 98.46% and 95.8%, respectively. We think that the developed models can be useful for determining the coating conditions according to the ink properties to coat a functional layer with user-defined widths and thicknesses in both lab- and industrial-scale roll-to-roll slot-die coating processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []