Chemical analysis of NGC 6528: one of the most metal-rich bulge globular cluster.

2018 
The Bulge Globular Clusters (GCs) are key tracers of this central ancient component of our Galaxy. It is essential to understand their formation and evolution to study that of the bulge, as well as their relationship with the other Galactic GC systems (halo and disk GCs). Our main goals are to obtain detailed abundances for a sample of seven red giant members of NGC 6528 in order to characterize its chemical composition and study the relationship of this GC with the bulge, and with other bulge, halo and disk GCs. Moreover, we analyze this cluster$'$s behavior associated with the Multiple Populations (MPs) phenomenon. We obtained the stellar parameters and chemical abundances of light elements (Na, Al), iron-peak elements (V, Cr, Mn, Fe, Co, Ni, Cu), {\alpha}-elements (O, Mg, Si, Ca, Ti) and heavy elements (Zr, Ba, Eu) in seven red giant members of NGC 6528 using high resolution spectroscopy from FLAMES-UVES. We obtained in six stars of our sample a mean iron content of [Fe/H]=-0.14+/-0.03 dex, in good agreement with other studies. We found no significant internal iron spread. We detected one candidate variable star, which was excluded from the mean in iron content, we derived a metallicity in this star of [Fe/H]=-0.55+/-0.04 dex. Moreover, we found no extended O-Na anticorrelation but instead only an intrinsic Na spread. In addition, NGC 6528 does not exhibit a Mg-Al anticorrelation, and no significant spread in either Mg or Al. The {\alpha} and iron-peak elements show good agreement with the bulge field star trend. The heavy elements are slightly dominated by the r-process. The chemical analysis suggests an origin and evolution similar to that of typical old Bulge field stars. Finally, we find remarkable agreement in the chemical patterns of NGC 6528 and another bulge GC, NGC 6553, suggesting a similar origin and evolution.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []