Myosin V from Drosophila reveals diversity of motor mechanisms within the myosin V family

2005 
Abstract Myosin V is the best characterized vesicle transporter in vertebrates, but it has been unknown as to whether all members of the myosin V family share a common, evolutionarily conserved mechanism of action. Here we show that myosin V from Drosophila has a strikingly different motor mechanism from that of vertebrate myosin Va, and it is a nonprocessive, ensemble motor. Our steady-state and transient kinetic measurements on single-headed constructs reveal that a single Drosophila myosin V molecule spends most of its mechanochemical cycle time detached from actin, therefore it has to function in processive units that comprise several molecules. Accordingly, in in vitro motility assays, double-headed Drosophila myosin V requires high surface concentrations to exhibit a continuous translocation of actin filaments. Our comparison between vertebrate and fly myosin V demonstrates that the well preserved function of myosin V motors in cytoplasmic transport can be accomplished by markedly different underlying mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    44
    Citations
    NaN
    KQI
    []