Genomic drivers of early-life fitness in Picea rubens

2021 
Red spruce (Picea rubens Sarg.) is a coniferous tree with a highly fragmented range in eastern North American montane forests. It serves as a foundational species for many locally rare and threatened taxa and has therefore been the focus of large-scale reforestation efforts aimed at restoring these montane ecosystems, yet genetic input guiding these efforts has been lacking. To tackle this issue, we took advantage of a common garden experiment and a whole exome sequencing dataset to investigate the impact of different population genetic parameters on early-life seedling fitness in red spruce. The level of inbreeding, genetic diversity and genetic load were assessed for 340 mother trees sampled from 65 localities across the species range and compared to different fitness traits measured on 5100 of their seedlings grown in a controlled environment. We identified an overall positive influence of genetic diversity and negative impact of genetic load and population-level inbreeding on early-life fitness. Those associations were most apparent for the highly fragmented populations in the Central and Southern Appalachians, where lower genetic diversity and higher inbreeding were associated with lower germination rate, shorter height and reduced early-life fitness of the seedlings. These results provide unprecedented information that could be used by field managers aiming to restore red spruce forests and to maximize the success of future plantations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    0
    Citations
    NaN
    KQI
    []