Rate-dependent adhesion of viscoelastic contacts, Part I: Contact area and contact line velocity within model randomly rough surfaces

2021 
Abstract In this work, we investigate dissipative effects involved during the detachment of a smooth spherical glass probe from a viscoelastic silicone substrate patterned with micro-asperities. As a baseline, the pull-off of a single asperity, millimeter-sized contact between a glass lens and a smooth poly(dimethylsiloxane) (PDMS) rubber is first investigated as a function of the imposed detachment velocity. From a measurement of the contact radius a ( t ) and normal load during unloading phase, the dependence of the strain energy release rate G on the velocity of the contact line v c = d a ∕ d t is determined under the assumption that viscoelastic dissipation is localized at the edge of the contact. These data are incorporated into Muller’s model (Muller, 1999) in order to predict the time-dependence of the contact size. Similar pull-off experiments are carried out with the same PDMS substrate patterned with spherical micro-asperities with a prescribed height distribution. From in situ optical measurements of the micro-contacts, scaling laws are identified for the contact radius a and the contact line velocity v c . On the basis of the observed similarity between macro and microscale contacts, a numerical solution is developed to predict the reduction of the contact radius during unloading.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    4
    Citations
    NaN
    KQI
    []