In vivo footprinting of the carbamoylphosphate synthetase I cAMP-response unit indicates important roles for FoxA and PKA in formation of the enhanceosome

2006 
Abstract The expression of carbamoylphosphate synthetase-I (CPS), the first and rate-determining enzyme of the urea cycle, is regulated at the transcriptional level by glucocorticoids and glucagon, the latter acting via cyclic AMP (cAMP). The hormonal response is mediated by a distal enhancer located 6.3 kb upstream of the transcription-start site. Within this enhancer, a cAMP-response unit (CRU) is responsible for mediating cAMP-dependent transcriptional activity. The CPS CRU contains binding sites for cAMP-response element (CRE)-binding protein (CRE-BP), forkhead box A (FoxA), CCAAT/enhancer-binding protein (C/EBP), and an unidentified protein P1. To gain insight in the protein–DNA interactions that activate the CPS CRU in living cells, we have employed in vivo footprinting assays. Comparison of the fibroblast cell line Rat-1 and the hepatoma cell lines FTO-2B and WT-8 showed that FoxA binds the CPS CRU constitutively in CPS-expressing cells only. Comparison of FTO-2B and WT-8 hepatoma cells, which only differ in cAMP responsiveness, demonstrated that the binding of the other transcription factors is dependent on cAMP-dependent protein kinase (PKA) activity. Finally, we observed a footprint between the CRE and the P1-binding site in the in vivo footprint assay that was not detectable by in vitro footprint assays, implying a major change in CRU-associated chromatin conformation upon CRU activation. These findings indicate that activation of the CRU is initiated in a tissue-specific manner by the binding of FoxA. When cellular cAMP and glucocorticoid levels increase, CRE-BP becomes activated, allowing the binding of the remaining transcription factors and the transactivation of the CPS promoter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    6
    Citations
    NaN
    KQI
    []