Cancer-associated fibroblasts secrete hypoxia-induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway.

2021 
BACKGROUND The tumor microenvironment (TME) is known to play a prominent role in the pathology of head and neck squamous cell carcinoma (HNSCC). Cancer-associated fibroblasts (CAFs) have been reported to regulate tumor progression, and serglycin (SRGN), one of the paracrine cytokines of CAFs, has been reported to play an important role in various signaling pathways. Hypoxia is a distinct feature of the HNSCC TME. Here, we investigated the mechanism underlying CAF-secreted SRGN leading to HNSCC progression under hypoxia. METHODS Immunohistochemical staining was used to detect SRGN expression in clinical HNSCC samples, after which its relation with patient survival was assessed. CAFs were isolated and SRGN expression and secretion by CAFs under normoxia and hypoxia were confirmed using qRT-PCR and ELISA assays, respectively. HNSCC sphere-forming abilities, stemness-related gene expression, and chemoresistance were assessed with or without SRGN treatment. A Wnt/β-catenin pathway inhibitor (PNU-75,654) was used to block its activation, after which nuclear translocation of β-catenin in the presence of SRGN with or without PNU-75,654 was evaluated. shRNAs were used to stably knock down SRGN expression in CAFs. HNSCC tumor cells with or without (SRGN silenced) CAFs were inoculated submucosally in nude mice after which tumor weights and sizes were determined to assess the effects of CAFs and SRGN on tumor growth. RESULTS We found that SRGN was expressed in both HNSCC tumor and stroma cells, and that high SRGN expression in the stroma cells, but not in the tumor cells, was significantly related to a poor patient survival. After the extraction of CAFs and normal fibroblasts (NFs) from paired tumor samples and adjacent normal tissues, respectively, we found that the expression of CAF-specific genes, including fibroblast activation protein (FAP) and alpha-smooth muscle actin (α-SMA), was clearly upregulated compared to the expression in NFs. The hypoxia marker HIF-1α was found to be expressed in tumor stroma cells. Hypoxyprobe immunofluorescence staining confirmed stromal hypoxia in an orthotopic tongue cancer mouse model. Using qRT-PCR and ELISA we found that a hypoxic TME upregulated SRGN expression and secretion by CAFs. SRGN markedly enhanced the sphere-forming ability, stemness-related gene expression and chemoresistance of HNSCC tumor cells. SRGN activated the Wnt/β-catenin pathway and promoted β-catenin nuclear translocation. An in vivo study confirmed that CAFs can accelerate HNSCC tumor growth, and that this effect can be counteracted by SRGN silencing. CONCLUSIONS Our data indicate that a hypoxic tumor stroma can lead to upregulation of SRGN expression. SRGN secreted by CAFs can promote β-catenin nuclear translocation to activate downstream signaling pathways, leading to enhanced HNSCC cell stemness, chemoresistance and accelerated tumor growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []