Interpreting Life-History Traits of Miconia (Miconia calvescens) through Management over Space and Time in the East Maui Watershed, Hawaii (USA)

2018 
Miconia (Miconia calvescens DC) was introduced to the East Maui Watershed (EMW) a halfcentury ago with more than 25 yr of management recorded. Using a historical spatiotemporal data set, we constructed a leptokurtic dispersal kernel with 99% of progeny confined to within 549 m of the nearest maternal source and the remaining 1% dispersed out to 1,636 m. Seedbank persistence, based on postdated recruitment, displayed an exponential decay projecting extinction beyond 20 yr. These parameters are highly congruent to independent interpretations of M. calvescens in Australia and Tahiti. In a simulated stage matrix model, we projected management efforts to locally eradicate a small incipient propagule bank wherein optimal management was achieved with an annual harvest rate that eliminated all juvenile recruits before reaching maturity, until extinction. Based on current pricing for helicopter herbicide ballistic technology (HBT) operations, the optimal, variable cost to locally eradicate this incipient propagule bank was estimated to be less than US$42,000, with ∼90% of the effort searching for the most distant 1% of the progeny expended within the first 9 yr after the mature discovery. This variable cost was sensitive to seedbank size, recruitment rate, and dispersal range, but was most sensitive to harvest rates between suboptimal and excess. In a scenario prioritizing the upper region of EMW, we retroactively analyzed past HBT efforts eliminating satellite M. calvescens and determined that 27% of the total effort resulted in 87% of the total protection to this priority asset, with every US$1 invested potentially avoiding US $184 in future costs. Management outside the priority area was less economical, with returns in protection diminishing with distance from the priority upper region. Miconia calvescens is currently not eradicable in the EMW, and full containment of the invasion would require a substantial increase in stable, long-term funding. With limited resources, local eradication of satellite M. calvescens could be the most cost-effective alternative to protecting uninvaded areas prioritized for critical ecosystem functions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []